Sucrose-based fabrication of 3D-networked, cylindrical microfluidic channels for rapid prototyping of lab-on-a-chip and vaso-mimetic devices.

نویسندگان

  • Jiwon Lee
  • Jungwook Paek
  • Jaeyoun Kim
چکیده

We present a new fabrication scheme for 3D-networked, cylindrical microfluidic (MF) channels based on shaping, bonding, and assembly of sucrose fibers. It is a simple, cleanroom-free, and environment-friendly method, ideal for rapid prototyping of lab-on-a-chip devices. Despite its simplicity, it can realize complex 3D MF channel architectures such as cylindrical tapers, internal loops, end-to-side junctions, tapered junctions, and stenosis. The last two will be of special use for realizing vaso-mimetic MF structures. It also enables molding with polymers incompatible with high-temperature processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing.

The creation of complex three-dimensional (3D) microfluidic systems has attracted significant attention from both scientific and applied research communities. However, it is still a formidable challenge to build 3D microfluidic structures with arbitrary configurations using conventional planar lithographic fabrication methods. Here, we demonstrate rapid fabrication of high-aspect-ratio microflu...

متن کامل

Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter.

Low-cost and straight forward rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter is presented. This rapid prototyping method can consistently achieve microchannels as thin as 200 microm in width and can be used to fabricate three-dimensional (3D) microfluidic devices using only double-sided pressure sensitive adhesive (PSA) tape and laser printer transparenc...

متن کامل

Rapid prototyping of microfluidic devices with a wax printer.

We demonstrate a rapid and inexpensive approach for the fabrication of high resolution poly(dimethylsiloxane) (PDMS)-based microfluidic devices. The complete process of fabrication could be performed in several hours (or less) without any specialized equipment other than a consumer-grade wax printer. The channels produced by this method are of high enough quality that we are able to demonstrate...

متن کامل

Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds.

Plastics are increasingly being used for the fabrication of Lab-on-a-Chip devices due to the variety of beneficial material properties, affordable cost, and straightforward fabrication methods available from a range of different types of plastics. Rapid prototyping of polydimethylsiloxane (PDMS) devices has become a well-known process for the quick and easy fabrication of microfluidic devices i...

متن کامل

3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.

Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 12 15  شماره 

صفحات  -

تاریخ انتشار 2012